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Abstract— Policy evaluation algorithms are essential to rein-
forcement learning due to their ability to predict the performance
of a policy. However, there are two long-standing issues lying
in this prediction problem that need to be tackled: off-policy
stability and on-policy efficiency. The conventional temporal
difference (TD) algorithm is known to perform very well in
the on-policy setting, yet is not off-policy stable. On the other
hand, the gradient TD and emphatic TD algorithms are off-policy
stable, but are not on-policy efficient. This paper introduces
novel algorithms that are both off-policy stable and on-policy
efficient by using the oblique projection method. The empirical
experimental results on various domains validate the effectiveness
of the proposed approach.

Index Terms— Off-policy, policy evaluation, reinforcement
learning (RL), temporal difference (TD) learning.

I. INTRODUCTION

POLICY evaluation plays a crucial role in reinforcement
learning (RL): it estimates a value function that can

predict the long-term return for a given fixed policy. Temporal
difference (TD) learning is the central and powerful policy
evaluation method in RL. However, it has two fundamen-
tal problems. The first problem is the off-policy stability.
Although TD converges when samples are drawn “on-policy”
(from the policy to be evaluated), it is shown to be possibly
divergent when samples are drawn “off-policy.” Off-policy
stable methods are of wider interest, since they can learn
while executing an exploratory policy, learn from demonstra-
tions, and learn multiple tasks in parallel. Several different
approaches have been explored to address off-policy learning.
The “averager” method [1] needs to store many training
examples, and thus is not practical for large-scale applications.
Off-policy LSTD [2] is off-policy convergent, but its per-
step computational complexity is quadratic in the number of
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parameters d of the function approximator. The most state-of-
the-art off-policy stable algorithms with linear computational
complexity are gradient TD (GTD) [3] and proximal gradient
TD (PGTD) [4], which use stochastic primal-dual-based meth-
ods as powerful solvers. The second problem is the on-policy
efficiency. Although GTD and PGTD are off-policy stable,
they usually tend to have inferior performances in on-policy
learning settings, especially in small-scale problems with rel-
atively few samples [5]. On the other hand, the TD method is
well-known for its on-policy efficiency, which explains well
its popularity among RL researchers and practitioners. It is
intriguing, therefore, to propose model-free policy evaluation
algorithms that offer both off-policy stability and on-policy
efficiency.

The major contribution of this paper is to explore policy
evaluation algorithms that yield both off-policy stability and
on-policy efficiency. To this end, we propose novel algorithms
based on the oblique projection framework [6]. A compu-
tationally feasible criterion is proposed and used to derive
algorithms with linear computational complexity per step. The
off-policy stability is rigorously proved, and the on-policy
and off-policy performances are demonstrated via thorough
experimental studies.

Here is a roadmap for the rest of this paper. Section II
introduces some RL background, reviews existing approaches
to tackle the problem of off-policy stability, and puts off-
policy policy evaluation in the framework of (weighted)
oblique projection. Section III provides the stable and effi-
cient TD (SETD) algorithm and a more general SETD(λ)
algorithm using weighted oblique projection. Related works
are discussed in Section IV and compared empirically with
the proposed SETD in Section V.

II. PRELIMINARIES

A. Reinforcement Learning

RL [7], [8] and approximate dynamic programming [9], [10]
is a class of learning problems in which an agent interacts with
an unfamiliar, dynamical, and stochastic environment, where
the agent’s goal is to optimize some measure of its long-term
performance. This interaction is conventionally modeled as a
Markov decision process (MDP). An MDP is defined as the
tuple (S,A, Pa

ss � , R, γ ), where S and A are finite sets of states
and actions, the transition kernel Pa

ss � specifies the probability
of transition from state s ∈ S to state s� ∈ S by taking action
a ∈ A, R(s, a) : S ×A→ R is the reward function bounded
by Rmax, and 0 ≤ γ < 1 is a discount factor. A stationary
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policy π : S × A → [0, 1] is a probabilistic mapping from
states to actions. The main objective of an RL algorithm is to
find an optimal policy. In order to achieve this goal, a key step
in many algorithms is to estimate the value function under a
given policy π , i.e., Vπ : S → R, a process known as policy
evaluation. It is known that Vπ is the unique fixed-point of
the Bellman operator Tπ , i.e.,

Vπ = Tπ Vπ = Rπ + γ Pπ Vπ (1)

where Rπ and Pπ are, respectively, the reward function and
transition kernel of the Markov chain induced by policy π .
In (1), we may think of Vπ as an |S|-dimensional vector and
write everything in a vector/matrix form. In the following,
to simplify the notation, we often drop the dependence of Tπ ,
Vπ , Rπ , and Pπ to π . We denote by πb the behavior policy
that generates the data, and by π the target policy that we
would like to evaluate. They are the same in the on-policy
setting and different in the off-policy scenario. For the i th
state-action pair (si , ai ), such that πb(ai |si ) > 0, we define
the importance-weighting factor ρi = π(ai |si )/πb(ai |si ).

When S is large or infinite, we often use a linear approx-
imation architecture for Vπ with parameters θ ∈ R

d and
K -bounded basis functions {ϕi }di=1, i.e., ϕi : S → R and
maxi �ϕi�∞ ≤ K . We denote by φ(·) := (ϕ1(·), . . . , ϕd (·))�
the feature vector and by F the linear function space spanned
by the basis functions {ϕi }di=1, i.e., F = { fθ | θ ∈ R

d

and fθ (·) = φ(·)�θ}. We may write the approximation of V in
F in the vector form as v̂ = 	θ , where 	 is the |S|×d feature
matrix. ξ ∈ R

|S| denotes the vector representing the stationary
probability distribution over the state space S and depends
on behavior policy πb. We also denote by � ∈ R

|S|×|S| the
diagonal matrix whose elements are ξ(s). The solution of
the TD algorithm is the fixed-point solution of the following
projected Bellman equation:

v̂ = �Tπ(v̂) (2)

where � = 	(	��	)−1	�� is the weighted least-squares
projection weighted by ξ .

When only n training samples (collected by the behav-
ior policy πb) are available, the sample set is denoted as
D = {(si , ai , ri = r(si , ai ), s�i )}ni=1, si ∼ ξ, ai ∼
πb(·|si ), s�i ∼ P(·|si , ai ). We denote by δi (θ) := ri+γφ

��
i θ−

φ�i θ the TD error for the i th sample (si , ai , ri , s�i ) and define
�φi = φi − γφ�i , where φi (resp. φ�i ) is the i th feature vector
with respect to si (resp. s�i ). Finally, we define the covariance
matrix C as C := E[φiφ

�
i ] = 	��	, where the expectations

are with respect to ξ . For the i th sample in the training set D,
an unbiased estimate of C is Ĉi := φiφ

�
i .

B. Oblique Projection

This section introduces the oblique projection [11] and
the oblique projected TD methods [6], and then extend it
to weighted oblique projected TD framework. The oblique
projection tuple (	, X) is defined as follows, where the rows of
	 are the basis vectors for the range of the projection and the
rows of X are the basis vectors for the orthogonal complement
of the null space of the projection.

Fig. 1. Illustration of oblique projected TD.

Definition 1: The Oblique Projection operator �X
	

�X
	 = 	(X�	)−1 X�

is a projection onto span(	) orthogonal to span(X).
�X

	 is a projection, since it is idempotent: (�X
	)2 = �X

	.
This projection reduces to an orthogonal projection when
the basis vectors for the range are orthogonal to the null
space, and is more general than the orthogonal projection. For
example, the weighted least-squares projection � in (2) can be
formulated as � = ��	

	 , which defines the oblique projection
onto the space spanned by 	 with basis {φ(s) : s ∈ S}
that is orthogonal to the space spanned by �	 with basis
{ξ(s)φ(s) : s ∈ S}.

Next, we introduce the oblique projected TD as a more
general framework to include the TD method and the residual
gradient (RG) method [12]. Motivated by the extension from
� to �X

	, it is natural to extend the projected fixed-point
equation (2) with oblique projection

v̂ = �X
	Tπ(v̂). (3)

Fig. 1 illustrates this. Instead of minimizing the distance
between �T (v̂) and v̂ , the oblique projected TD aims to
minimize the distance between �X

	T (v̂) and v̂ .
An intuitive question to ask is what the best oblique pro-

jection matrix X is. Is it TD, RG, some interpolation between
them, or none of the above? To answer this, we present the
following lemma, a workhorse of this paper.

Lemma 1 (Best Projection [6]): Given 	, if Vπ does not
lie in span(	), the “best” approximation is

v∗ = �Vπ = 	(	��	)−1	��Vπ

which is also the solution of the oblique projected TD equation
v∗ = �X∗

	 T v∗ with

X∗ = (
L�π

)−1
�	 (4)

with Lπ := I − γ Pπ .
Proof: The solution of the oblique projected fixed-point

equation v̂ = �X
	T (v̂) with respect to the oblique projection

�X
	 can be represented as the oblique projection �

L�π X
	 of the

true value function V [6], that is

v̂ = �X
	Tπ(v̂) = �

L�π X
	 V .

As X∗ satisfies v∗ = �
(L�π )X∗
	 V . Let �

(L�π )X∗
	 = �, we have

(L�π )X∗ = �	 and thus we can have (4), which completes
the proof. �
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C. Weighted Oblique Projection

The analytical formulation of X∗ is often intractable to
compute in real applications. The major reason is that Pπ

and consequently (L�π )−1 in X∗ are not known in the RL
setting. To address this challenge, we introduce the weighted
oblique projection matrix Y = �−1 X and derive a stochastic
approximation of X∗ subject to a structural simplification
assumption. From the definition of Y , it is evident that its
optimum is attained at

Y ∗ = �−1 X∗ = �−1(L�π
)−1

�	

and the fixed point equation formulation in (3) becomes
v̂θ = ��Y

	 Tπ v̂θ accordingly. It turns out that both TD and
RG solutions are weighted oblique projections with YTD = 	
for TD, YRG = Lπ	 for RG. Next, we discuss the necessary
conditions of the existence of the fixed-point solution.

Lemma 2 (Existence): The solution to the weighted oblique
projected Bellman equation

v̂θ = ��Y
	 Tπ v̂θ (5)

exists if Y��	 and Y��Lπ	 are nonsingular, and the
solution is

θ = (Y��Lπ	)−1Y��R. (6)

Proof:

v̂θ = ��Y
	 Tπ v̂θ

⇔ Y��v̂θ = Y��(R + γ Pπ v̂θ )

⇔ Y��Lπ	θ = Y��R

⇔ θ = (Y��Lπ	)−1Y��R.

The first equality holds if Y��	 is nonsingular, and the last
equality holds if Y��Lπ	 is nonsingular. �

Therefore, the nonsingularity of Y��	 and Y��Lπ	
guarantees the existence of ��Y

	 and θ as in (6). The exten-
sion from oblique projection to weighted oblique projection,
though technically trivial, enables the design of stochastic
approximation-based algorithms.

III. ALGORITHM DESIGN

This section presents the design of the stable and effi-
cient algorithm. We first present the motivation to use the
oblique projection. Then, a computationally efficient criterion
is proposed to overcome the computational intractability to
compute X∗. Based on this criterion, an algorithm is proposed
based on a diagonal approximation and is also extended to the
multistep learning setting with eligibility trace.

A. Motivation

This paper aims at achieving off-policy stability for TD
learning in off-policy settings. It is well-known that the TD
method with linear function approximation has instability
issues in off-policy learning settings [7], [13], which is largely
due to the limitation of the projected fixed-point formulation
in (2). TD solution, as a projected fixed-point formulation,
is highly sensitive to the degree of “off-policyness,” i.e., the

difference between the behavior policy πb and the target policy
π . On the other hand, �V , being the “best” approximation [by
the representation space span(	)] of the true value function V ,
is always unique and stable, yet is difficult to compute in RL
settings. It is therefore desirable to propose a novel fixed-point
formulation whose solution is close to the best approximation
�V to enable off-policy stability. One possible way to achieve
this is to use the weighted oblique projection operator ��Y

	
and change the vanilla projected Bellman formulation in (2)
to the weighted oblique projected Bellman formulation in (5).
Closeness to �V implies that the solution is less sensitive
to the “off-policyness” than the TD solution. In a nutshell,
this paper aims at proposing a weighted oblique projected TD
framework in (5) to achieve off-policy stability via forcing
proximity to the “best” approximation �V , with stochastic
approximation methods.

B. Approximation Criteria

We first introduce a simple but important property of
the optimal projection matrix X∗. We denote � := Lπ	.
As X∗ = (L�π )−1�	, we have

��X∗ = 	�(L�π )
(
L�π

)−1
�	 = 	��	 = C. (7)

Motivated by this, Proposition 1 is presented to formulate
the cornerstone of this paper.

Proposition 1: If the weighted oblique projection Y sat-
isfies Y��Lπ	 = C , and if 	 has full row rank
(rank(	) = |S|), then we have Y = Y ∗

Proof:

Y��Lπ	 = C

⇔ Y��Lπ	 = 	��	

⇔ L�π �Y = �	 (as rank(	) = |S|)
⇔ �Y = (

L�π
)−1

�	 = X∗

⇔ Y ∗ = Y.

�
Although the rank condition is restrictive in real applica-

tions, it still offers helpful directions to approximate X∗ in a
computationally efficient way.

C. SETD Algorithm Design

In this paper, we investigate a special type of weighted
oblique projection: Y can be decomposed into the product of
a |S| × |S| diagonal matrix � and 	 such that Y = �	. The
optimal �, termed �∗, can be obtained via

�∗ = arg min
�
���	− X∗�F

which is impossible to compute, since X∗ is unknown. With
(7), an approximation of �∗, termed �S , can be computed as

�S = arg min
�
�����	− C||F . (8)
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The optimization problem reduces to a matrix regression
problem, with � · �F the Frobenius norm. With the sample-
based estimation of ����S	 and C matrices, i.e.,

����S	 ← 1

n

n∑

i=1

ωi
(
φi − γφ�i

)
φ�i

C ← 1

n

n∑

i=1

φiφ
�
i

with ωi the i th diagonal element of �S; the problem is
formulated as

min
ωi

1

n

∥
∥
∥
∥
∥

n∑

i=1

(
ωi�φiφ

�
i − φiφ

�
i

)
∥
∥
∥
∥
∥

F

.

Therefore, (8) can be approximated as

�S ≈ arg min
ωi

1

n

∥
∥∥
∥
∥

n∑

i=1

(
ωi�φiφ

�
i − φiφ

�
i

)
∥
∥∥
∥
∥

F

.

Now, we propose a relaxed method to address this prob-
lem based on two observations. First, it is desirable that
∀i , �S(si , si ) be positive. This is intuitive. Second, instead
of solving the above objective function, a relaxed sample-
separable objective function �S using the triangle inequality
can be formulated as follows by denoting ωi := �S(si , si ):

∀i, ωi = arg min
ω

∥
∥ω�φiφ

�
i − φiφ

�
i

∥
∥

F , s.t. ωi ≥ 0.

The closed-form solution of ωi is

ωi = max

(
�φ�i φi

��φi�2 , 0

)

(9)

where � · � is the �2-norm of a vector.
Here, we show the detailed deduction. To obtain (9), we first

introduce the following lemmas to compute the singular value
of rank-1 matrices. We first introduce Lemma 3 without proof,
which is instrumental in the theoretical proof.

Lemma 3: A rank-1 real-valued square matrix G = pq�
where p, q are the vectors of the same length, the eigenvalues
of G are

λ(G) = {p�q, 0, 0, 0, . . .}
i.e., G has only one nonzero eigenvalue p�q , and all other
eigenvalues are 0 and Tr(G) = p�q , where T r(·) is the trace
of a matrix.

Then, we introduce Lemma 4.
Lemma 4: A rank-1 real matrix (not necessarily square)

M = uv� has only one nonzero singular value
σmax(M) = �u�2 · �v�2, where � · �2 is the �2-norm of a
vector, and the Frobenius norm and the trace norm of M are
identical, i.e.,

�M�∗ = �M�F = σmax(M) = �u�2 · �v�2. (10)

Proof: We use M H to represent the conjugate transpose
of the M matrix and λ(·) to represent the eigenvalues of a
square matrix. Then, we have

λ(M H M) = λ(vu�uv�) = (u�u)λ(vv�).

From Lemma 3, we know that λ(vv�) are {v�v, 0, 0, . . .}, and
thus, M has only one nonzero singular value σmax(M)

σmax(M) =
√

λ(M H M) =
√

λ(vu�uv�)

=
√

(u�u)λ(vv�) =
√

(u�u)(v�v)

= �u�2 · �v�2
and all other singular values of M are 0. Thus,
�M�∗ = �M�F = �u�2 · �v�2, which completes the
proof. �

Based on Lemma 4, we now show the derivation of (9). To
tackle the following trace norm minimization formulation:

ωi = arg min
ω

∥
∥ω�φiφ

�
i − φiφ

�
i

∥
∥∗ (11)

we need to use the structure of the rank-1 matrices. We have

ω�φiφ
�
i − φiφ

�
i = (ω�φi − φi )φi

�

we denote qi (ω) := (ω�φi − φi ), and thus, we have

ωi = arg min
ω

∥
∥qi (ω)φ�i

∥
∥∗

= arg min
ω
�φi�2 · �qi (ω)�2

= arg min
ω
�qi (ω)�2. (12)

The second equality above comes from (10), and the third
equality from the fact that �φi�2 does not depend on ω.

On the other hand, using � · �2F instead of trace norm in
(11), we have

ωi = arg min
ω

∥
∥qi(ω)φ�i

∥
∥2

F (13)

with

�qi (ω)φ�i �2F = Tr
(
φi q
�
i (ω)qi (ω)φ�i

)

= (
φ�i φi

)
T r

(
qi (ω)q�i (ω)

)

= (
φ�i φi

)(
q�i (ω)qi (ω)

)

= �φi�22�qi (ω)�22.
The first equality comes from the fact that �M�2F =
Tr(M H M). The third equality comes from Lemma 3. Then,
we can see that (13) is equivalent to (12), as verified by
Lemma 4. Therefore, both the trace norm and Frobenius norm
minimizations are equivalent to

ωi = arg min
ω
�ω�φi − φi�22. (14)

By zeroing the gradient of the right hand-side of (14), we will
have (9) as the final result, which is also the vector projection
weight of φi projected onto �φi .

For the on-policy case, the update rule is now ready as
θi+1 = θi+αiωiδiφi , where αi ∈ (0, 1] is the stepsize. For the
off-policy case, importance weights ρi = (π(ai |si )/πb(ai |si ))
are used to enable the algorithm to consider the discrepancies
between the behavior policy π and the target policy πb by
properly weighing the observation, which is a standard way
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in off-policy learning [14], [15]

Eπ [δiωiφi ]
=

∑

si+1

∑

ai

∑

si

P(si , ai , si+1)δiωiφi

≈
∑

si+1

∑

ai

∑

si

P(si+1 |si , ai )π(ai |si )ξ(si )δiωiφi

=
∑

si+1

∑

ai

∑

si

P(si+1 |si , ai )πb(ai |si )ξ(si )
π(ai |si )

πb(ai |si )
δiωiφi

= Eπb [ρiδiωiφi ].
The update rule is thus defined as

θi+1 = θi + αiρiωiδiφi (15)

where αi ∈ (0, 1] is the stepsize. The resulting SETD is in
Algorithm 1.

Algorithm 1 SETD Algorithm

1: INPUT: Sample set {φi , ri , φi
�}ni=1

2: for i = 1, . . . , n do
3: Compute φi ,�φi , δi = ri + γφ

��
i θi − φ�i θi .

4: Compute ωi according to Eq. (9).
5: Compute θi+1 according to Eq. (15).
6: end for

The computational cost per step is O(d), as can be seen from
the computation of (9) and (15).

D. Extension to Eligibility Traces

Here, we extend SETD to eligibility traces. First, we intro-
duce the general λ-return with bootstrapping and discounting
based on the importance-weighting factor by using the TD
forward view

Gλρ
t (V ) = ρt

(
rt+1 + γ

[
(1− λ)V (St+1)+ λGλρ

t+1

])

and define the value function at s for a given policy π

Vπ(s) = E
[
Gλρ

t (Vπ)|St = s, π
] = T λρ

π Vπ(s)

where λ ∈ [0, 1] is the bootstrapping parameter and T λρ
π is

the λ-weighted Bellman operator for policy π . Using linear
function approximation, we get the TD equation

b − Aθ = 	���S R −	���S�θ

= 	���S
(
T λρ

π Vθ − Vθ

)
.

Define δ
λρ
t (θ) := Gλρ

t (θ)− φ�t θ and

Pπ
ξ δ

λρ
t (θ)ωtφt :=

∑

s

ξ(s)E
[
δ
λρ
t (θ)|St = s, π

]
ωtφt

where Pπ
ξ is an operator. We also have

E
[
δ
λρ
t (θ)|St = s, π

] = T λρ
π Vθ (s)− Vθ (s)

Pπ
ξ δ

λρ
t (θ)ωtφt =

∑

s

ξ(s)E
[
δ
λρ
t (θ)|St = s, π

]
ωtφt

=
∑

s

ξ(s)
[
T λρ

π Vθ (s)− Vθ (s)
]
ωtφt

= 	���S
(
T λρ

π Vθ − Vθ

)
.

Therefore, we have Pπ
ξ δ

λρ
t (θ)ωtφt = E[δλρ

t (θ)ωtφt ].
Consider the following identities:

δ
λρ
t (θ) = Gλρ

t (θ)− φ�t θ

= ρt
(
rt+1 + γ

[
(1− λ)φ�t+1θ + λGλρ

t+1

])− φ�t θ

= ρt
(
rt+1 + γφ�t+1θ − φ�t θ + φ�t θ

)

− ρtγ λφ�t+1θ + ρtγ λGλρ
t+1 − φ�t θ

= ρt
(
rt+1 + γφ�t+1θ − φ�t θ

)

+ ρtγ λ
(
Gλρ

t+1 − φ�t+1θ
)+ ρtφ

�
t θ − φ�t θ

= ρtδt (θ)+ ρtγ λδ
λρ
t+1(θ)+ (ρt − 1)φ�t θ

and

E
[
(ρt − 1)φ�t θ

]

=
∑

s

ξ(s)
∑

a

πb(a|s)(ρt − 1)φ�t θ

=
∑

s

ξ(s)
(∑

a

π(a|s)−
∑

a

πb(a|s)
)
φ�t θ = 0.

Hence, we can get

b − Aθ = 	���S
(
T λρ

π Vθ − Vθ

) = Pπ
ξ δ

λρ
t (θ)ωtφt

= E
[
δ
λρ
t (θ)ωtφt

]

= E
[
ρtδt (θ)ωtφt + ρtγ λδ

λρ
t+1(θ)ωtφt

+ (ρt − 1)
(
φ�t θ

)
ωtφt

]

= E
[
ρtδt (θ)ωtφt + ρtγ λδ

λρ
t+1(θ)ωtφt

]

= E
[
ρtδt (θ)ωtφt + ρt−1γ λδ

λρ
t (θ)ωt−1φt−1

]

= E
[
ρtδt (θ)ωtφt + ρt−1γ λ

(
ρtδt (θ)

+ ρtγ λδ
λρ
t+1(θ)+ (ρt − 1)φ�t θ

)
ωt−1φt−1

]

= E[ρtδt (θ)(ωtφt + ρt−1γ λωt−1φt−1

+ ρt−2ρt−1γ
2λ2ωt−2φt−2 + · · · )]

= E[δt (θ)et ]
where the eligibility trace vector is defined as
et = ρt (ωtφt + γ λet−1). Therefore, we can now specify our
final new algorithm, SETD(λ), by the following steps, for
t > 0:

wt = max

(
�φ�t φt

��φt�2 , 0

)

et = ρt (λγ et−1 +wtφt )

θt+1 = θt + αδt et (16)

where e0 = �0. It is shown in Algorithm 2.

Algorithm 2 SETD(λ)

1: INPUT: Sample set {φt , rt , φt
�}nt=1

2: Initialize e0 = �0.
3: for t = 1, . . . , n do
4: Compute φt ,�φt , δt = rt + γφ

��
t θt − φ�t θt .

5: Compute ωt according to Eq. (16).
6: Compute et = ρt (λγ et−1 + ωtφt ).
7: Compute θt+1 = θt + αtδt et .
8: end for
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IV. RELATED WORK

This section presents the related work, which is primarily
the emphatic TD (ETD) algorithm [16] and the Retrace(λ)
algorithm [17].

The Retrace(λ) algorithm shares the same motivation with
the SETD algorithm, i.e., off-policy stability and on-policy
efficiency. To this end, it uses a capped importance ratio
technique, which is shown to be superior to the conven-
tional importance sampling method and the Tree backup
method [18]. This research direction is complementary to
our research and has the potential to combine with the
SETD method, which is left for future research due to space
limitations.

To the best of our knowledge, the closest work to ours is
the ETD method [16]. ETD has indeed a weighted oblique
projection structure similar to SETD, with YE = �E	. The
i th diagonal element �E (i, i) is computed as

�E (0, 0) = 1

�E (i, i) = 1+ γ ρi−1�E (i − 1, i − 1), i > 0

and the ETD algorithm update law is

θi+1 = θi + αi�E (i, i)ρiδiφi .

A more detailed explanation of the ETD algorithm from the
oblique projection perspective is shown as follows. Similar to
SETD, ETD also assumes that the weighted oblique projection
YE can be approximated by the product of a diagonal matrix
(termed �E ) and 	, i.e., YE = �E	. Then, a different
technique is used based on the power series expansion, i.e.,

(Lπ )−1 = (I − γ Pπ )−1 =
∞∑

k=0

(γ Pπ)k .

Then, the power series expansion is used to compute ��
as a whole. Since the optimal oblique projection matrix is
X∗ = (L�π )−1�	, it is evident that X̂ E = ��E	 should be
as close as possible to X∗, especially the diagonal elements.
The diagonal elements of X̂ E are represented as a (column)
vector f . One conjecture is that for the diagonal matrix of
X̂ E , it is desired that f = (L�π )−1ξ. By using the power
series expansion, f can be expanded as

f = (
L�π

)−1
ξ =

( ∞∑

k=0

(
γ P�π

)k

)

ξ

= (
I + γ P�π +

(
γ P�π

)2 + · · · + (
γ P�π

)k + · · · )ξ.

Readers familiar with the ETD learning algorithm know that
this is actually identical to [16, eq. (13)], where a scalar follow-
on trace is computed as1

�E (0, 0) = 1

�E (t, t) = 1+ γ ρt−1 �E (t − 1, t − 1), t > 0

with �E (t, t) denoting the t diagonal element of �E . It turns
out that

fi = ξ(i) lim
t→∞E[�E (i, i)|St = si ]

1We use subscript •t to denote sequential samples, and subscription •i to
denote samples that are randomly sampled with replacement.

Fig. 2. Two-state MDP.

which leads to the standard ETD(0) algorithm

θt+1 = θt + αt�E (t, t)ρt δtφt .

Previous works [19], [20] also associated ETD with oblique
projection. This sheds a helpful light on understanding the
family of the ETD learning algorithms. However, the ETD
algorithm requires the sequential sampling condition, i.e.,
s�i = si+1,∀i > 0, which is not suitable for a set of samples
collected from many episodes. This restriction is alleviated for
the SETD algorithm.

We compare the two algorithms on the two-state MDP
of [16]. As shown in Fig. 2, this environment has two actions,
left and right, which take the process to the left or right states.
The single feature is [1, 2]� in the two states, and the discount
factor γ = 0.9. The behavior policy πb is to go left and right
with equal probability from both the states, while the target
policy π is to go right in both the states.

Since Pπ = [0 1 0 1], we have

Lπ = I − γ Pπ =
[

1 −0.9
0 0.1

]

and

X∗ = (L�π )−1�	 =
[

0.5
14.5

]

with X∗ is the optimal oblique projection matrix and
� = 0.5I .

Next, we compute the oblique projection matrices, X�E and
X�S , for SETD and ETD, respectively.

According to the definition of matrix �E in ETD algorithm
by [16], let us use a (column) vector fETD to represent the
diagonal elements of matrix �E , and it is calculated as

fETD = (I − γ P�π )−1ξ = ξ + γ P�π ξ + (γ P�π )2ξ + · · ·
Therefore, fETD(1) = 0.5 and fETD(2) = 0.5+0.9+ (0.9)2+
(0.9)3 + · · · = 9.5. Therefore, we can get

�E =
[

0.5 0
0 0.95

]
. (17)

Then, we have

X�E = ��E	 =
[

0.25
9.5

]
. (18)

For the SETD algorithm, each diagonal entry of �S can be
computed according to (9), which is

�S =
[

0 0
0 10

]
. (19)
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TABLE I

COMPARISON ON THE TWO-STATE MDP

TABLE II

CONSIDERED VALUES FOR GRID-SEARCH

Then, we have

X�S = ��S	 =
[

0
10

]
. (20)

Here is a summary of comparing the SETD and ETD on the
two-state MDP domain, as shown in Table I. It should be
noted that though TD will diverge on this domain, the solution
to TD is the upper bound. As mentioned in Section II-C,
the weighted oblique projection structure for TD is YTD = 	.
This is equivalent to YTD = �TD	 where

�TD = I. (21)

Then, we have

XTD = ��TD	 =
[

0.5
1

]
(22)

for this 2-state MDP domain. Table I shows the comparison
of SETD and ETD in the diagonalized approximation of X∗.
For TD

�����	− C� = ����	−	��	�2F =�γ (	���	)�2F .

According to the result, it can be seen that SETD performs
better than ETD in X∗ estimation.

V. EXPERIMENTAL STUDY

This section evaluates the effectiveness of the proposed
algorithms. GTD2, TD with gradient correction term (TDC),
and ETD are used for off-policy learning comparison, and
TD, GTD2, TDC, and ETD are used for the on-policy case. It
should be mentioned that since the major focus of this paper is
value function approximation, comparisons on control learning
performance are not reported here. We use αTD, αETD, αSETD,
αGTD2, μGTD2 (βGTD2 = αGTD2 ∗ μGTD2), and αTDC, μTDC
(βTDC = αTDC ∗ μTDC) to denote the stepsizes for TD, ETD,
SETD, GTD2, and TDC, respectively. In order to focus on
the algorithm itself and make the comparison fair, which is
similar to [5] and [14], only constant stepsize is considered in
this paper. All stepsizes are chosen via a range of parameters
similar to [14] that are based on the grid search method,
as shown in Table II.

Fig. 3. 14-State Boyan Chain MDP, λ = 0.4.

Two metrics, root mean-squares error (RMSE) and root
mean-squares projected Bellman error (RMSPBE) [3], are
used as the performance measure

RMSE =
√
�v̂ − V �2� RMSPBE =

√
�v̂ −�T v̂�2�.

A. On-Policy Comparison

1) Boyan Chain: Comparison studies are conducted on the
Boyan Chain MDP, which has 14 states and one action with
a 4-D state representation [21]. Algorithm 2 is compared with
λ = 0.4, 0.8, as shown in Figs. 3 and 4, respectively. To enable
the visibility of details, we zoom in the first 1000 timesteps
and the last 500 timesteps in the figures. For λ = 0.4,
constant stepsizes are αTD = 0.2, αSETD = 0.4, αETD = 0.04,
αGTD2 = 0.5, μGTD2 = 1,αTDC = 0.3, and μTDC = 0.001.
For λ = 0.8, constant stepsizes are αTD = 0.2, αSETD = 0.3,
αETD = 0.04, αGTD2 = 0.3, μGTD2 = 1, αTDC = 0.3,
and μTDC = 0.001. The learning curves are averaged over
the results of 20 runs. Compared with all of the other
approaches, SETD tends to have the fastest convergence speed
and reaches similar steady-state performance on both RMSE
and RMSPBE.

2) Mountain Car: The mountain car problem is also used
to evaluate the validity of SETD. The mountain car MDP
is an optimal control problem with a continuous 2-D state
space. The steep discontinuity in the value function makes
learning difficult. The Fourier basis [22] is used, which is
a kind of fixed basis set. In this experiment, an empirically
good policy π was first obtained, and then, we ran this
policy π to collect trajectories that comprise the data set.
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Fig. 4. 14-State Boyan Chain MDP, λ = 0.8.

On-policy policy evaluation of π is then conducted using
the collected samples. The constant stepsizes are chosen as
αTD = 0.1, αETD = 0.002, αSETD = 0.4, αGTD2 = 0.05,
μGTD2 = 1, αTDC = 0.04, and μTDC = 0.05. The learning
curves are averaged over the results of 20 runs. The Monte
Carlo estimation of V is estimated via 100 runs and each run
has a maximum of 200 time steps.

As shown in Fig. 5, TD performs slightly better than SETD
and ETD. TDC and GTD2 converge slowly in this domain.

B. Off-Policy Comparison

1) Baird Domain: The Baird example [12] is a well-known
example to test the performance of off-policy convergent algo-
rithms. Constant stepsizes αSETD = 0.006, αGTD2 = 0.005,
μGTD2 = 1, αTDC = 0.006, and μTDC = 16, which are chosen
via comparison studies as in [14].

Figs. 6 and 7 show the RMSPBE curve and RMSE curve of
GTD2, SETD, and TDC of 4000 steps averaged over 20 runs.
TDC has the largest variance of all; although the variance
of SETD is larger than that of GTD2, SETD has a significant
improvement over the GTD2 algorithm wherein the RMSPBE,
the RMSE, and the variance are all substantially reduced. The
low variance of the GTD2 learning curve can be explained by
the advantage of the stochastic gradient method [4].

2) 400-State Random MDP: This domain is a randomly
generated MDP with 400 states and 10 actions [14]. The
transition probabilities are defined as P(s�|s, a) ∝ pa

ss � +10−5,
where pa

ss � ∼ U [0, 1]. The behavior policy πb, the target policy
π , as well as the starting distribution are sampled in a similar
manner. Each state is represented by a 201-D feature vector,
where the first 200 features were sampled from a uniform

Fig. 5. Mountain Car with on-policy task.

Fig. 6. Off-policy Baird domain (RMSPBE).

Fig. 7. Off-policy Baird domain (RMSE).

distribution, and the last feature was a constant one and the
discount factor is set to γ = 0.95. The constant stepsizes are
chosen as αETD = 2.5 ∗ 10−6, αSETD = 0.0008, αGTD2 =
0.002, μGTD2 = 1, αTDC = 0.002, and μTDC = 0.05. Both
the RMSE curve and the RMSPBE curve are averaged over
20 runs, and each run has 10 000 time steps. ETD is very
sensitive to stepsizes on this domain and tends to diverge with
a large stepsize, thus making the convergence very slow. As
shown in Fig. 8, SETD performs better than GTD2 and ETD,
although the variance is relatively larger than that in GTD2.
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Fig. 8. Random MDP with off-policy task.

Overall, although SETD tends to have a relatively large
variance in the initial phase, it is: 1) off-policy convergent;
2) converging much faster than GTD2 and TDC in both the on-
policy and off-policy settings; and 3) less sensitive to stepsizes
than ETD in the off-policy setting.

VI. CONCLUSION

This paper addressed the question: how to design a policy
evaluation algorithm that is both off-policy stable and on-
policy efficient? Novel algorithms have been proposed, based
on oblique projection. Empirical experimental studies showed
the effectiveness of the proposed algorithms in different learn-
ing settings.

There are numerous promising future work potentials along
this direction of research. One is to conduct a sample com-
plexity analysis such as a high probability error bound. This
is important, because the performance of machine learning
algorithms is always evaluated with a finite number of samples
in real applications. Another interesting direction is to explore
new approximation criteria. Current computationally tractable
criteria of computing X∗ are based on Proposition 1 (as used
in SETD) or on the power series expansion of (L�π )−1�	
(as used in ETD). It is intriguing to explore if there exists
other computationally tractable criteria. Finally, how to design
a true-online SETD(λ) algorithm and compare its performance
with other true-online algorithms [5], such as true-online
GTD(λ) and true-online ETD(λ), is also worth exploring.
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